1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
use std::ffi::{CStr, CString};
use std::os::raw::c_long;
use std::ptr;
use std::str;
use std::time::Duration;
use crate::ffi::*;
use crate::{
context_and_function, context_and_sync_function, context_and_apply_function,
time_after_delay,
};
/// The type of a dispatch queue.
#[derive(Clone, Debug, Hash, PartialEq)]
pub enum QueueAttribute {
/// The queue executes blocks serially in FIFO order.
Serial,
/// The queue executes blocks concurrently.
Concurrent,
}
impl QueueAttribute {
#[cfg(not(all(test, target_os = "linux")))]
fn as_raw(&self) -> dispatch_queue_attr_t {
match *self {
QueueAttribute::Serial => DISPATCH_QUEUE_SERIAL,
QueueAttribute::Concurrent => DISPATCH_QUEUE_CONCURRENT,
}
}
#[cfg(all(test, target_os = "linux"))]
fn as_raw(&self) -> dispatch_queue_attr_t {
// The Linux tests use Ubuntu's libdispatch-dev package, which is
// apparently really old from before OSX 10.7.
// Back then, the attr for dispatch_queue_create must be NULL.
ptr::null()
}
}
/// The priority of a global concurrent queue.
#[derive(Clone, Debug, Hash, PartialEq)]
pub enum QueuePriority {
/// The queue is scheduled for execution before any default priority or low
/// priority queue.
High,
/// The queue is scheduled for execution after all high priority queues,
/// but before any low priority queues.
Default,
/// The queue is scheduled for execution after all default priority and
/// high priority queues.
Low,
/// The queue is scheduled for execution after all high priority queues
/// have been scheduled. The system runs items on a thread whose
/// priority is set for background status and any disk I/O is throttled to
/// minimize the impact on the system.
Background,
}
impl QueuePriority {
fn as_raw(&self) -> c_long {
match *self {
QueuePriority::High => DISPATCH_QUEUE_PRIORITY_HIGH,
QueuePriority::Default => DISPATCH_QUEUE_PRIORITY_DEFAULT,
QueuePriority::Low => DISPATCH_QUEUE_PRIORITY_LOW,
QueuePriority::Background => DISPATCH_QUEUE_PRIORITY_BACKGROUND,
}
}
}
/// A Grand Central Dispatch queue.
///
/// For more information, see Apple's [Grand Central Dispatch reference](
/// https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html).
#[derive(Debug)]
pub struct Queue {
pub(crate) ptr: dispatch_queue_t,
}
impl Queue {
/// Returns the serial dispatch `Queue` associated with the application's
/// main thread.
pub fn main() -> Self {
let queue = dispatch_get_main_queue();
unsafe {
dispatch_retain(queue);
}
Queue { ptr: queue }
}
/// Returns a system-defined global concurrent `Queue` with the specified
/// priority.
pub fn global(priority: QueuePriority) -> Self {
unsafe {
let queue = dispatch_get_global_queue(priority.as_raw(), 0);
dispatch_retain(queue);
Queue { ptr: queue }
}
}
/// Creates a new dispatch `Queue`.
pub fn create(label: &str, attr: QueueAttribute) -> Self {
let label = CString::new(label).unwrap();
let queue = unsafe {
dispatch_queue_create(label.as_ptr(), attr.as_raw())
};
Queue { ptr: queue }
}
/// Creates a new dispatch `Queue` with the given target queue.
///
/// A dispatch queue's priority is inherited from its target queue.
/// Additionally, if both the queue and its target are serial queues,
/// their blocks will not be invoked concurrently.
pub fn with_target_queue(label: &str, attr: QueueAttribute, target: &Queue)
-> Self {
let queue = Queue::create(label, attr);
unsafe {
dispatch_set_target_queue(queue.ptr, target.ptr);
}
queue
}
/// Returns the label that was specified for self.
pub fn label(&self) -> &str {
let label = unsafe {
let label_ptr = dispatch_queue_get_label(self.ptr);
if label_ptr.is_null() {
return "";
}
CStr::from_ptr(label_ptr)
};
str::from_utf8(label.to_bytes()).unwrap()
}
/// Submits a closure for execution on self and waits until it completes.
pub fn exec_sync<T, F>(&self, work: F) -> T
where F: Send + FnOnce() -> T, T: Send {
let mut result = None;
{
let result_ref = &mut result;
let work = move || {
*result_ref = Some(work());
};
let mut work = Some(work);
let (context, work) = context_and_sync_function(&mut work);
unsafe {
dispatch_sync_f(self.ptr, context, work);
}
}
// This was set so it's safe to unwrap
result.unwrap()
}
/// Submits a closure for asynchronous execution on self and returns
/// immediately.
pub fn exec_async<F>(&self, work: F) where F: 'static + Send + FnOnce() {
let (context, work) = context_and_function(work);
unsafe {
dispatch_async_f(self.ptr, context, work);
}
}
/// After the specified delay, submits a closure for asynchronous execution
/// on self.
pub fn exec_after<F>(&self, delay: Duration, work: F)
where F: 'static + Send + FnOnce() {
let when = time_after_delay(delay);
let (context, work) = context_and_function(work);
unsafe {
dispatch_after_f(when, self.ptr, context, work);
}
}
/// Submits a closure to be executed on self the given number of iterations
/// and waits until it completes.
pub fn apply<F>(&self, iterations: usize, work: F)
where F: Sync + Fn(usize) {
let (context, work) = context_and_apply_function(&work);
unsafe {
dispatch_apply_f(iterations, self.ptr, context, work);
}
}
/// Submits a closure to be executed on self for each element of the
/// provided slice and waits until it completes.
pub fn for_each<T, F>(&self, slice: &mut [T], work: F)
where F: Sync + Fn(&mut T), T: Send {
let slice_ptr = slice.as_mut_ptr();
let work = move |i| unsafe {
work(&mut *slice_ptr.offset(i as isize));
};
let (context, work) = context_and_apply_function(&work);
unsafe {
dispatch_apply_f(slice.len(), self.ptr, context, work);
}
}
/// Submits a closure to be executed on self for each element of the
/// provided vector and returns a `Vec` of the mapped elements.
pub fn map<T, U, F>(&self, vec: Vec<T>, work: F) -> Vec<U>
where F: Sync + Fn(T) -> U, T: Send, U: Send {
let mut src = vec;
let len = src.len();
let src_ptr = src.as_ptr();
let mut dest: Vec<U> = Vec::with_capacity(len);
let dest_ptr = dest.as_mut_ptr();
let work = move |i| unsafe {
let result = work(ptr::read(src_ptr.offset(i as isize)));
ptr::write(dest_ptr.offset(i as isize), result);
};
let (context, work) = context_and_apply_function(&work);
unsafe {
src.set_len(0);
dispatch_apply_f(len, self.ptr, context, work);
dest.set_len(len);
}
dest
}
/// Submits a closure to be executed on self as a barrier and waits until
/// it completes.
///
/// Barriers create synchronization points within a concurrent queue.
/// If self is concurrent, when it encounters a barrier it delays execution
/// of the closure (and any further ones) until all closures submitted
/// before the barrier finish executing.
/// At that point, the barrier closure executes by itself.
/// Upon completion, self resumes its normal execution behavior.
///
/// If self is a serial queue or one of the global concurrent queues,
/// this method behaves like the normal `sync` method.
pub fn barrier_sync<T, F>(&self, work: F) -> T
where F: Send + FnOnce() -> T, T: Send {
let mut result = None;
{
let result_ref = &mut result;
let work = move || {
*result_ref = Some(work());
};
let mut work = Some(work);
let (context, work) = context_and_sync_function(&mut work);
unsafe {
dispatch_barrier_sync_f(self.ptr, context, work);
}
}
// This was set so it's safe to unwrap
result.unwrap()
}
/// Submits a closure to be executed on self as a barrier and returns
/// immediately.
///
/// Barriers create synchronization points within a concurrent queue.
/// If self is concurrent, when it encounters a barrier it delays execution
/// of the closure (and any further ones) until all closures submitted
/// before the barrier finish executing.
/// At that point, the barrier closure executes by itself.
/// Upon completion, self resumes its normal execution behavior.
///
/// If self is a serial queue or one of the global concurrent queues,
/// this method behaves like the normal `async` method.
pub fn barrier_async<F>(&self, work: F)
where F: 'static + Send + FnOnce() {
let (context, work) = context_and_function(work);
unsafe {
dispatch_barrier_async_f(self.ptr, context, work);
}
}
/// Suspends the invocation of blocks on self and returns a `SuspendGuard`
/// that can be dropped to resume.
///
/// The suspension occurs after completion of any blocks running at the
/// time of the call.
/// Invocation does not resume until all `SuspendGuard`s have been dropped.
pub fn suspend(&self) -> SuspendGuard {
SuspendGuard::new(self)
}
}
unsafe impl Sync for Queue { }
unsafe impl Send for Queue { }
impl Clone for Queue {
fn clone(&self) -> Self {
unsafe {
dispatch_retain(self.ptr);
}
Queue { ptr: self.ptr }
}
}
impl Drop for Queue {
fn drop(&mut self) {
unsafe {
dispatch_release(self.ptr);
}
}
}
/// An RAII guard which will resume a suspended `Queue` when dropped.
#[derive(Debug)]
pub struct SuspendGuard {
queue: Queue,
}
impl SuspendGuard {
fn new(queue: &Queue) -> SuspendGuard {
unsafe {
dispatch_suspend(queue.ptr);
}
SuspendGuard { queue: queue.clone() }
}
/// Drops self, allowing the suspended `Queue` to resume.
pub fn resume(self) { }
}
impl Clone for SuspendGuard {
fn clone(&self) -> Self {
SuspendGuard::new(&self.queue)
}
}
impl Drop for SuspendGuard {
fn drop(&mut self) {
unsafe {
dispatch_resume(self.queue.ptr);
}
}
}
#[cfg(test)]
mod tests {
use std::sync::{Arc, Mutex};
use std::time::{Duration, Instant};
use crate::Group;
use super::*;
fn async_increment(queue: &Queue, num: &Arc<Mutex<i32>>) {
let num = num.clone();
queue.exec_async(move || {
let mut num = num.lock().unwrap();
*num += 1;
});
}
#[test]
fn test_serial_queue() {
let q = Queue::create("", QueueAttribute::Serial);
let mut num = 0;
q.exec_sync(|| num = 1);
assert_eq!(num, 1);
assert_eq!(q.exec_sync(|| num), 1);
}
#[test]
fn test_sync_owned() {
let q = Queue::create("", QueueAttribute::Serial);
let s = "Hello, world!".to_string();
let len = q.exec_sync(move || s.len());
assert_eq!(len, 13);
}
#[test]
fn test_serial_queue_async() {
let q = Queue::create("", QueueAttribute::Serial);
let num = Arc::new(Mutex::new(0));
async_increment(&q, &num);
// Sync an empty block to ensure the async one finishes
q.exec_sync(|| ());
assert_eq!(*num.lock().unwrap(), 1);
}
#[test]
fn test_after() {
let q = Queue::create("", QueueAttribute::Serial);
let group = Group::create();
let num = Arc::new(Mutex::new(0));
let delay = Duration::from_millis(5);
let num2 = num.clone();
let guard = group.enter();
let start = Instant::now();
q.exec_after(delay, move || {
let mut num = num2.lock().unwrap();
*num = 1;
guard.leave();
});
// Wait for the previous block to complete
group.wait_timeout(Duration::from_millis(5000)).unwrap();
assert!(start.elapsed() >= delay);
assert_eq!(*num.lock().unwrap(), 1);
}
#[test]
fn test_queue_label() {
let q = Queue::create("com.example.rust", QueueAttribute::Serial);
assert_eq!(q.label(), "com.example.rust");
}
#[test]
fn test_apply() {
let q = Queue::create("", QueueAttribute::Serial);
let num = Arc::new(Mutex::new(0));
q.apply(5, |_| *num.lock().unwrap() += 1);
assert_eq!(*num.lock().unwrap(), 5);
}
#[test]
fn test_for_each() {
let q = Queue::create("", QueueAttribute::Serial);
let mut nums = [0, 1];
q.for_each(&mut nums, |x| *x += 1);
assert_eq!(nums, [1, 2]);
}
#[test]
fn test_map() {
let q = Queue::create("", QueueAttribute::Serial);
let nums = vec![0, 1];
let result = q.map(nums, |x| x + 1);
assert_eq!(result, [1, 2]);
}
#[test]
fn test_barrier_sync() {
let q = Queue::create("", QueueAttribute::Concurrent);
let num = Arc::new(Mutex::new(0));
async_increment(&q, &num);
async_increment(&q, &num);
let num2 = num.clone();
let result = q.barrier_sync(move || {
let mut num = num2.lock().unwrap();
if *num == 2 {
*num = 10;
}
*num
});
assert_eq!(result, 10);
async_increment(&q, &num);
async_increment(&q, &num);
q.barrier_sync(|| ());
assert_eq!(*num.lock().unwrap(), 12);
}
#[test]
fn test_barrier_async() {
let q = Queue::create("", QueueAttribute::Concurrent);
let num = Arc::new(Mutex::new(0));
async_increment(&q, &num);
async_increment(&q, &num);
let num2 = num.clone();
q.barrier_async(move || {
let mut num = num2.lock().unwrap();
if *num == 2 {
*num = 10;
}
});
async_increment(&q, &num);
async_increment(&q, &num);
q.barrier_sync(|| ());
assert_eq!(*num.lock().unwrap(), 12);
}
#[test]
fn test_suspend() {
let q = Queue::create("", QueueAttribute::Serial);
let num = Arc::new(Mutex::new(0));
// Suspend the queue and then dispatch some work to it
let guard = q.suspend();
async_increment(&q, &num);
// Sleep and ensure the work doesn't occur
::std::thread::sleep(Duration::from_millis(5));
assert_eq!(*num.lock().unwrap(), 0);
// But ensure the work does complete after we resume
guard.resume();
q.exec_sync(|| ());
assert_eq!(*num.lock().unwrap(), 1);
}
}